Dalmia Cement (Bharat) Limited, Kadapa

Dalmia

22nd National Award for Excellence in Energy Management - 2021

Presentation Team

Mentor : Mr. K Karunakara Rao Unit Head Leader : Mr. Srinivasa Reddy Technical Head

Presenting Team Members

Mr. Mohanraj-ProcessMr. Santhosh Kumar-E&IMr. Muthamilselvan-Process

Save Energy - Save Money - Save the Planet.

Company Profile

- > Founded in 1935 by Shri Jaidayal Dalmia.
- The Group interests includes Cement, Sugar, Power and Refractory with Pan India Presence.
- The Group established India's first Cement Plant with 250 TPD in 1939.
- > Overall Cement Manufacturing Capacity 30 MTPA
- Kadapa Unit Commissioned in Dec 2008 with a Capacity of 2.5MTPA Cement and Standing 4th Largest Cement Manufacturing Capacity in the Country

Cement Manufacturing Process

Impact of COVID-19

- Dispatch had got affected in the month of April'20 and May'20 due to Covid 19
 Lockdown.
- 50 % Employee worked in the plant during pandemic period in order to avoid the spread of virus.
- Employee and workmen had instructed to follow the Covid 19 safety guidelines which implemented by Government of India.

Encon Journey

<u>FY 21-22 Current Plan & Actions</u> Waste Heat Recovery System Use of pond ash in Cement Grinding 13.1 MW Solar Plant Chlorine bypass System to increase AFR

FY 2021

FY 2020

FY 2021 – Installation of Shredder, optimization of cement mill

FY 2020-CMBH Fan Impeller, 4 Point Feeding of Flyash, Cooler Optimisation

FY 2019 – Secondary Crusher Cement Mill HAG, Flyash LP Compressor

FY 2018 – Liquid Al. Fuel, RM Cyclone CFD & Modified, Clinker Cooler Modified

FY 2016

MILESTONE

FY 2017 – Raw Mill Fan Impeller Replaced. Kiln Burner & Pipe Modified

FY 2016 – Liquid & Solid AFR RABH & CM Fan Impeller Replaced

FY 2019

- Commissioning 1. All Motors are Energy Efficient Series
 - 2. More than 60% Motors are with VFD

FY 2018

FY 2017

3. All Process Fans with VFD and w/o Damper

Sp. Thermal Energy Consumption Trend & Global Comparison

Thermal SEC without Kiln Start Stop : 686 Kcal / Kg Clinker (Benchmarking Thermal SEC)

NB – National Benchmark INB – International Benchmark

Sp. Electrical Energy Consumption Trend (Upto Clinkerization)

KWH/Ton of Clinker

Electrical SEC without Kiln Start Stop : 49.5 U/TClinker

Sp. Electrical Energy Consumption Cement Grinding - Variety wise (kWh/Ton)

Comparison with Global Norms / Benchmark Data

Sp. Energy Consumption	DCBL Actual (FY 2020-21)	National Benchmark ***	International Benchmark ***		
Specific Energy Consumption – Thermal (KCal/Kg of Clinker)	690	676	660 (Japan)		
Upto Clinker SEC – Electrical (KWh/T of Clinker)	50.25	42.59	42.59 (India)		
Overall Cement SEC – Electrical (KWh/T of Cement)	68.09	56.14	56.14 (India)		
*** Source of Information · CII					

*** Source of Information : CII

Thermal substitution rate,%

Country 3rd Lowest G to G Sp. Power Under OPC Major Production (Ref. BEE Gazette Notification S.O. 1264 (E) 31st Mar 2016)

Road Map for Achieving Benchmark / Global Best – Electrical Energy

2

Target - 56.1 U/T of PPC_{equ}

Waste Heat Recovery System (12 MW)-AQC commissioned 13.1 MW solar plant-Under Erection

Increase PPC Sales % (Red. of 0.8 U/T)

> Raw Mill Fan upgradation (Reduction of 0.6 U/T)

> > Cooler upgradation (Reduction of 1.1 U/T)

> > > Present 59.1 U/T of PPC_{equ}

Cement Mill Capacity upgradation (Reduction of 0.5 U/T)

Road Map for Achieving Benchmark / Global Best – Thermal Energy

3

Short term Long term

Target - 676 Kcal/Kg of Clinker

Use of AFR (Increase 7% on TSR from Current Rate)

Pyro up gradation(6 Kcal/Kg)

Raw mix Optimization(2Kcal/Kg)

Cooler efficiency improvement & Up gradation (Red. of 6 Kcal/Kg)

> Present 690 Kcal/Kg of Clinker

Major Encon Projects (FY 2021 to 2022)

SI.No.	Name of the Energy Saving Project	Investment (INR Million)	Annual Electrical Saving (Million kWh)	Annual Thermal Saving (Kcal)
1	Waste Heat recovery system design capacity of 12.1 MW and operating capacity of 9.6MW.	1490	64.80	-
2	13.1 MW Solar Power Plant	634	14.4	-
3	Installation of Chlorine Bypass system to Increase the AFR %	340.1	-	33326

Encon Projects

AQC Boiler – WHRS

Shredder - AFR

Summary of Energy Saving Projects in the Last 3 Years.

Year	No. of Energy saving projects	Investment s (INR Million)	Electrical savings (Million kWh)	Thermal savings (Million INR)	Savings (INR Million)	Impact on SEC (kWh/MT of Cement)
2018-19	29	98.06	1.67	2.1	80.1	0.18
2019-20	21	13.7	2.23	0.23	14.61	0.09
2020-21	21	177	6.41	6.5	134	3.69

Highlighted Encon Projects No Investment (FY 2018 to 2021)

Title of Project	Annual Electrical Saving (kWh)	Annual Elect. Cost Saving (Rs Lakhs)
Packing Plant Bag Filter Fans Auto Speed Reduction with Packer Rotation and Spout	109500	0.66
Interlocking of Cement Silo Top Bag Filters Operation as per Mill Operation Grade.	72000	4.32
Operation-logic modification in Hydraulic system (Coal Mill, & Cement Mill)	9500	6
Rawmill Nozzle ring blind plate modification to increase the production	359877	2.16
During every mill Start/stop,Idle running of grinding equipments was 1100 kWh.All the existing interlock reviewed and reduced the timer sequence thereby reduced the idle units to 700 kWh in cement mill	39900	0.24

Energy Conservation Projects With Investment (FY 2018 to 2021)

Title of Project	Annual Elect. Saving (kWh)	Annual Electrical Cost Saving (Rs Lakhs)	Invest. (Rs Lakhs)
Cement Mill Bag House RAL with VFD & Reduced False Air	90000	5.40	8.80
Man Cleaning Blowers Installed	24000	1.44	1.40
Installed Secondary Crusher for Raw Mill	2074600	124.48	110.00
Use of polymer liners in pondash hopper to improve the material flowability	42500	2.6	1.1

Energy Conservation Projects With Investment – Thermal (FY 2018-21)

Title of Project	Year	Annual Thermal Saving (Ton/Year)	Annual Thermal Saving (Rs Lakhs)	Invest.(Rs Lakhs)
Thermal Insulation Lithopone Paint at PH 6 th Cyclone	FY 2018-19	263	2.10	10
Liquid AFR Feeding Arrangement to Kiln Burner	FY 2018-19	1000	8	80
Solid AFR Feeding Arrangement to Precalciner	FY 2018-19	7200	57.60	810
AFR Handling & Re-circulation for Consistency in AFR Firing	FY 2018-19	24	0.19	28

Optimisation of Classifier speed :

Observation :

✓ The separator speed was operating with higher speed

with maximum air flow

✓ Mill was unstable due to higher internal airflow

✓ Low separator dust load(380 g/m3)

✓ High dam ring height due to high dust recirculation

Optimisation of Classifier speed :

Optimisation of Classifier speed :

The quality of separation requires sufficient ventilation

Optimisation of Mill : Conclusion :

- $\checkmark\,$ Nozzle ring area reduced from 6.2 to 4.5 m^2
- ✓ Mill Reject reduced from 25% to <7% of total feed</p>
- $\checkmark\,$ Dam ring height reduced from 260 to 170 mm
- ✓ Fan operating point with max.efficiency point
- ✓ Improved clinker grind ability

Cement Mill Specific power reduction :

<u>Cement Mill Specific power reduction (PPC) :</u>

Optimisation of Classifier speed

Dashboard-Cement Mill	board-Cement Mill OPC			PPC Tota		Cement	
Description	FY 20-21	FY 19-20	FY 20-21	FY 19-20	FY 20-21	FY 19-20	Difference (FY-FY)
Mill Production(Tons)	10,43,229	12,51,840	6,69,890	5,90,801	17,37,639	18,42,641	
Mill R.hrs	3,470	4,439	2,182	1,929	5,780	6,368	
Mill Output rate(TPH)	300.7	282.0	306.9	306.4	300.6	289.4	11.3
Units per ton of Cement							
Cement Mill Main Drive	15.01	17.54	14.08	15.35	14.71	16.84	-2.13
Cement Mill Fan Drive	7.40	10.05	6.69	8.82	7.16	9.66	-2.50
Cement Mill Classifier Drive	0.42	0.75	0.46	0.86	0.45	0.78	-0.33
Other auxilaries	2.42	2.67	3.63	3.41	2.85	2.91	-0.06
Total Cement Mill	25.24	31.01	24.86	28.44	25.17	30.19	-5.02
Units per hour							
Cement Mill Main Drive	4,512	4,946	4,322	4,704	4,423	4,873	-450
Cement Mill Fan Drive	2,224	2,835	2,054	2,702	2,151	2,795	-643
Cement Mill Classifier Drive	126	211	140	264	135	227	-92
Other auxilaries	726	753	1,115	1,044	856	841	15
Total Cement Mill	7,589	8,744	7,631	8,713	7,565	8,735	-1,170

Tangible & Intangible Benefits

- Mill operation is stable
- Mill Specific power reduced by 5.02 kWh/T of cement
- Classifier speed reduced from 74 to 63 rpm with optimum air flow
- > Annual savings (17,37,639 x 6.0 x 5.02) 523.4 Lakhs per year
- Mill output increased from 306 TPH to 330 TPH resulting to savings in peak hour power utilization operating

Renewable Energy Sources (2020-21)

1		Sav	vings	
Type of Renewable Energy Source	Installed Capacity in KW	Energy Generated (Lakhs Unit)	Cost Saving (Rs. Lakhs)	
Non Solar REC	-	23.18	-	
Solar REC	-	19.58	-	
Solar Power	30	0.49	3.13	
Bio Gas Plant	At Guest House	1800 m³/Yr.	1.20	

1MW Roof Top in Pipe Line 13.1MW Solar Plant

13.1 MW Solar Power Plant Under Erection- Target Dec;21

Renewable Energy

Solar Roof Top-30 KW at Guest House

Solar Street Lights(8 Nos)

Solar power Pack – 2 KW

Dalmia Cement Committment

http://there100.org/dalmia-cement

(page 13)

First Cement Plant in India Committed Volunteerly

Dalmia BHARAT GROUP

Dalmia Cement RE100 Committment & Action Plan

	Total Power Requirement / Consumption at Kadapa	Lakh Units / Annum	1290
	GPP Generation with 9 MW WHRS	Lakh Units / Annum	400
	12 MW Solar Plant within Premises (Installation)	Lakh Units / Annum	198
RE 100 Action Plan	28 MW Solar Plant Through Open Access	Lakh Units / Annum	462
	1 MW Roof Top Solar	Lakh Units / Annum	15
	Minimum Grid Power Consumption	Lakh Units / Annum	108
	Potential for Other Source & Energy Saving Opportunity Utilization	Lakh Units / Annum	107

Waste Consumption as Green Fuel (FY 2020-21)

SI.NO	Name of the Fuel	QT in MT	GCV in Kcal/Kg	Percentage
1	Spent Solvent Liquid	1670	3247	0.12%
2	Process organic residue liquid	1602	3031	0.11%
3	Waste Process salt	346	3943	0.11%
4	Waste mixed solid		3898	0.07%
5	Organic residue solid		3020	0.49%
6	Spent carbon	210	3650	0.44%
7	Plastic waste	10227	4651	4.32%
8	Rubber foam waste	155	4856	0.07%
9	Rice Husk	137	3271	0.04%
10	FRP waste	178	5957	0.93%
11	MSW	18	2690	0.79%
12	RDF	3018	3382	0.01%
13	Multi layer plastic waste	1822	4772	0.08%
14	ETP sludge	17	4120	0.07%
15	Assorted AFR	192	4410	0.00%
16	Biomass waste	218	3353	0.10%
17	Paint Sludge	32	4568	0.01%

Total - 7.9 %

Waste Consumption as Green Fuel (FY 2019-20)

SI.NO	Name of the Fuel	QT in MT	GCV in Kcal/Kg	Percentage
1	Waste Process salt	703	3697	0.19%
2	Waste mixed solid	857	3428	0.21%
3	Organic resuidue solid	6450	3634	1.67%
4	Pyro Carbon	6535	6878	3%
5	Spent carbon	1032	3311	0.24%
6	Spent Solvent Liquid	3831	3584	0.98%
7	Organic Residue Liquid	7590	3254	1.76%
8	Plastic waste	4879	3907	1.36%
9	Tyre chips	20	5550	0.01%
10	Rice Husk	29	3550	0.01%
11	RDF	4683	3682	1.23%
12	MSW	212	3423	0.05%
13	Bamboo		4191	0.00%
14	Assorted AFR		4165	0.03%
15	Biomass waste	503	2976	0.11%
16	Paint Sludge	92	3356	0.02%

Total - 11 %

Waste Consumption as Raw Material

Sl.No	Year	Waste as Raw Material	Quantity (Tones)	Replaced material	Waste as percentage
1		Wet Flyash	14932	Aluminus Laterite	0.48
2	2018-19	Slag	31147	IronOre	1
3		Gas Cleaning Plant waste (GCP Dust)	113	IronOre	0.004
4		Wet Flyash	25418	Aluminus Laterite	0.84
5	2019-20	Slag	28067	IronOre	0.92
6		Redmud	12107	Aluminus Laterite & Ironore	0.4
7		Wet Flyash	39394	Aluminus Laterite	1.64
8	2020-21	Slag	2011	Aluminus Laterite & Limestone	0.08
9		Redmud	8239	Aluminus Laterite & Ironore	0.34

GHG Inventorisation

Carbon Foot Print Activities

Year	Scope 1 emissions CO ₂ e (MT)	Scope 2 emissions CO ₂ e (MT)	Scope 3 emissions CO ₂ e (MT)	kg CO₂e/MT of Cement	Mitigation Total Reduction in emission intensity since baseline year study CO ₂ e (MT)		
2012 - 13	731	70	28	870	Bacalina Vaar		
(Baseline Year)	731	70	20	029	Dasenne rear		
2013 - 14	722	76	24	822	7		
2014 - 15	689	80	27	796	33		
2015 - 16	706	77	10	793	36		
2016 - 17	694	76	11	781	48		
2017 - 18	698	75	13	786	43		
2018 - 19	698	75	11	784	45		
2019 - 20	697	74	10	781	48		
2020 - 21	693	73	10	776	53		
-	Process	Electricity	Transport	Overall	6.4% Reduction from Base Line		

Target : 755 kg CO₂ e/MT of Cement

(WHRS, Cooler Up gradation, PPC% ...)

Green Supply Chain Project (FY 2020-21)

SI.No.	Name of Project Implemented	Investment	Benefits
1 PLMS- Plant Logistics		81 akhs	Tracking of Truck Waiting time at different Loaction.
_	Management System		Reduction of Truck Turnaround Time.
			Unmaned weigh Bride operation.
2	RFID- Radio Frequency Interface Device	7 Lakhs	Reduction of Man intervention and reduction of Error
			Reduction of Truck Turnaround Time.
2	TBPS-Transporter Bill Payment	5 Lakhs	Bill process time reduction
5	System	JLAKIIS	Tracking of invoice status.
			Goods Transition Through Godown Eliminated
4	End to End Project	2 Lakhs	Good Travel Distance Reduced
			Energy & Cost Savings in Logistics
E Vohielo un Sizo			To reduce No of trips
		-	Energy & Cost Savings in Logistics
6	DD (Direct Dispatch)		Delivery to End customer to reduce handling in depots
		-	Energy & Cost Savings in Logistics

Green Supply Chain Policy

Dalmia Cement (B) Lt.d., Chinnakomerla is Committed to Protect the Environment by Striving for the Greening of Supply Chain in Collobration with our Stakeholders for Long Term Sustainability.

- Protect the Environment by Creating Awareness
- > Adhere to Environment, Health and Safety Compliance
- Reduce, Reuse and Recycle Resources

Dalmia

Issue No. 01

- Train & Educate to say No Child Labors
- > Nourish Plantation and Greenery in Vicinity
- Encourage Saving of Water and Electricity
- Reduce Green House Gas Emissions
- Strive for Sustainable Partnership

K.Karunakar Rao Unit Head

Rev. No. 01

Effective Date: 09.09.2019

Team Work, Employee Involvement & Monitoring

Energy Monitoring System

Daily Power Consumption Report

Daily Energy Conservation Report

	Dalmia Cement (Bharat) Limited. Kadapa Project Daily Power Consumption Report								
	132Kv Main Incoming Units	374595	Kwhr		Avg PF:	0.990) Report Date: XX.06.20		
	DG Generation Units	0	Kwhr				Consumpt Date:	ion	XX.06.20X X
	Peak Hour Consumption	20715	Kwhr		(MD) KVA	22500	OLTC Opn. 9 Count		9
Sl. No.	Section Description	Units Consumption	Runnin g Hrs	Prodn.	Productio n Rate	Avg Kw	Guarantee d U/T of Matl.	A U/T	ctual of Matl.
1	I S Crushor		16.17	11445	707 79	628			
1	LS Crusher Main Drive	3771	10.17	11445	101.15	233	0.38		1.33
	LS Crusher Auxiliaries	1938				200	0.46		0.17
	211BC2 Long Belt	2386		•		14			0.21
	211BC2A Long Belt	2060				127	0.42 0.18		0.18
	LS Crusher & Transport- Total	10155					1.25		0.89
2	Raw Mill		16.92	7105	419.92	7106			
	Raw Mill Main Motor	63 8				3733		8.89	
	Raw Mill Fan Motor	446 <mark>2</mark> 8				2638	17.42 6.28		6.28
	Raw Mill Classifier 🛛 🧹	152	/			90			0.21
	MCC - 02 (LS Transport)	195.				116			0.28
	MCC - 03 (RM Grinding Aux.)) 3 6				410	2.07 0.98		0.98
	Additive Reclaimer	327				19			0.05
	LS Stacker & Reclaimer	1706				101			0.24
	RM Fan SPRS Recovery	0				0			0.00
	Total	120235					19.49	1	.6.92
3	Coal Mill		14.33	577	40.27	877			
0	Coal Mill Main Motor	5197	11.00	011	10.2	363			9.01
	Coal Mill Fan Motor	3577				250	25.51		6.20
	Coal Mill Classifier	272				19			0.47
	MCC - 07 (Coal Mill Grinding Aux.)	2169				151	16.73	;	3.76
	RMH & Coal Crusher	1349				94			2.34
	Total	12564					25.51	2	1.77

ENERC	ERGY CONSERVATION (IDLE POWER CONSUMPTION REPORT)										
SECTION		OPTI MUM SATR T UP TIME	ACTU AL RUNN ING HOUR S	XX.06.2 0XX	2 ENERGY IN KWH		КWН				
	SECTION DESCRIPTION				IDLE RUNIN G TIME	IDLE /SHUT DOWN UNITS	ACTUA L U/Ton	WITHO UT IDLE RUNNIN G U/Ton	Kwh		
	А	PRON	FEEDER		0.00	16.17					
LS	CRUS	SHER M	IAIN DRIVE		0.17	17.67	1.33	106.40			80.00
CRUSHE		2111	BC2		0.50	17.92	0.00	0.00	0.89	0.86	145.00
ĸ		211B	C2A		0.50	17.92	1.2	181.25			145.00
	MINES DEWATERING PUMP					66.00					
	IDLE/SHUT DOWN POWER						87.5				
	No of Start/ Stops 3.00						\bigcirc				
	WEIGH FEEDER				00	16.	>				
	MAIN DRIVE					16/0	-0.05	0.00	16.92	16.88	150.00
D MCII	FAN					16.90	-0.32	0.00			2600.0 0
Kaw Mill	LS RECLAIMER FEED 3. OUP					16.50	4.30	335.40			78.00
	AD. RECLAIMI, CED GRO					12.70	2.60	0.00			49.00
	TOTAL DCS IDLE / SHU, DOWN POWER							335.40			
	No of Start/ Stops	0.00	Dcs Idle Power	331.00							
	WEIGH FEEDER				0.00	14.33					
		MAIN	DRIVE		0.03	14.40	0.04	2.00			50.00
Coal Mill	FAN				0.17	14.70	0.13	32.50	19 44	19.06	250.00
	COAL ST	ACKE	R FEED GROU	JP	3.30	3.30	0.00	0.00	19.11	19.00	54.00
	COAL RE	CLAIM	ER FEED GRO	DUP	3.80	5.30	1.50	180.00			120.00
	RAW M	ATERIA	AL HANDLIN	G				1349.00			
	TOTAL DCS IDLE / SHUT DOWN POWER							214.50			
	No of Start/ Stops 4.00 Dcs Idle Power 75.00										

Monitoring & Review Mechanism

Online Sp. Energy Monitoring

Online SEC Monitoring by CCR Operator and taking Immediate action during increase in SEC Indication

Online SEC of Electrical & Thermal Energy Consumption as -per

- 1. Sum of Electrical Power Consumption
- 2. Coal Feed Rate
- 3. Process Material Feed Rate

Cloud Based Energy Management System

Grid I/C Meter

Data in Website & Mobile

Employees Involvement Training – Summary (FY 2020-21)

SI.No	Training Program	Internal / External	No.of participants	Duration (Hrs)
1	Heat & Mass Balance	Virtual	12	2
2	Circulation Phenomena in Pyro Process	Virtual	13	2
3	MV Drives & SPRS-Slip Power Recovery System	Virtual	13	2
4	BAG FILTER (Over View ,operation & Maintenance)	Virtual	15	2
5	Basics of Fan Engineering	Virtual	12	2
6	Combustion Engineering	Virtual	13	2
7	Mill-Separation	Virtual	12	2
8	Motor Basics & Energy Saving	Virtual	16	2

Encon Total Employee Involvement

(Engineers, Supervisors, Workmen...)

	Project - 1	Project - 2	Project - 3	Project - 4
Source of En-Con Idea :	NECD	CFT Meeting	Kaizen	Kaizen
Idea Originated From :	Engineer	Fitter	Operator	Engineer
Idea Originated in the Year :	2020	2020	2021	2021
Whether Idea Implemented :	YES	YES	YES	YES
Name of the Project	Eliminated tripping of raw mill Feed RAL. Replaced the lower kW RAL motor with higher KW RAL, leads to reduced trippings.	Provision of Bin at bulk loading and eliminated start stop consumption of silo extraction group.	Speed reduction of fly ash silo aeration blower K21BL4 when RAL is stopped. Reduced the speed of blower by providing the interlock with feed RAL when it stops.	Added Additional Pilot Direction Control Check Valve in the Raw Mill Hydraulic Circuit to reduce the Pump Operation Cycle Time (300 Times to 4)
No. of Team Members Involved	2	3	2	2
Benefits	6.6 Lakh Units/ Annum	0.54 Lakh Units/ Annum	0.02 Lakh Units / Annum	0.1 Lakh Units/Annum

Turn Over & Investment

GreenCo Rating System – Roadmap

Innovative EE Technologies

Technologies Adopted

- 1. Robotic Lab with X-Ray Analyzer for Consistent Quality, Production and Sp. Power Consumption.
- 2. MV & LV Drives for all Process Fans (PH Fan, BH Fan, Mill Fan and other Fans).
- 3. Online Energy Management System with Cloud Supported. (Monitoring & Reduction of Idle Power, Analysis for Variation in Sp. Power Consumption.
- 4. Cross Belt Analyzer for Consistent Quality and Improved Additives Consumption.

Innovative EE Technologies

Technologies Adopted

- **Expert Optimizer for Energy Efficient** 5. **Plant Operation with Minimized** Variation and Maximized the Capacity Utilization.
- 6. **Intelligent MCC Panels for High Reliability and Elimination of Breakdown Energy Losses**
- 7. **High Accurate Pfister System for Consistent Feeding of Fine Coal, which** avoids Variation and Reduction of Thermal Consumption
- **Online SEC Monitoring of Thermal &** 8. **Electrical SEC through DCS**

Long Term Target for Energy Efficiency

- 1. High Efficiency Clinker Cooler to Reduce the Thermal Energy Consumption. (Technical Support & Supplier Engagement)
- 2. Burn ability Improvement by Mineralizer to Reduce the Thermal Energy Consumption. (Technical Support)
- 3. Top cyclone modification to improve the thermal and electrical energy. (Technical Support & Supplier Engagement with Guaranteed Parameters)
- 4. Lower Cyclone Dispersion Box Height in Raiser Duct Modification to Improve the Heat Transfer. (Technical Support & Supplier Engagement)

APSECM - Award

FICCI – Excellence in Mines Safety

Total 7 Nos. of Awards Received in FY 2020-21

Environmental Projects

Theme : Water Pond Development & Rain Water Harvesting

Kadapa Plant is Water Positive

Environmental Projects

5S Model Company

Dalmia cement

FUTURE TODAY

Thanks

v.mohanraj@dalmiacement.com k.santhoshkumar@dalmiacement.com s.muthamilselvan@dalmiacement.com